Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(5): 3699-3710, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37933977

RESUMO

Ternary oil-water-surfactant systems can give rise to an O/W microemulsion in equilibrium with excess oil, a W/O microemulsion in equilibrium with excess water, or a bicontinuous microemulsion in equilibrium with excess oil and water. This type of phase behavior has been known for a long time and the three systems are often referred to as Winsor I, Winsor II and Winsor III, respectively after the British scientist P. A. Winsor who pioneered the area. The Winsor systems are technically important and well understood today. It was later found that addition of a polymer to the oil-water-surfactant system can influence the phase behavior considerably. While a hydrophilic polymer will be incorporated in the water phase and a hydrophobic polymer in the oil phase, an amphiphilic polymer with the right hydrophilic-lipophilic balance may expand the middle phase microemulsion in a Winsor III system. Expansion of the middle phase of such a system will lead to a reduction of the oil/microemulsion and the microemulsion/water interfacial tensions. This can be practically important, and the effect is currently of considerable interest for so-called surfactant flooding for enhanced oil recovery (EOR). Boosting the middle phase of the Winsor III system by addition of a polymer to the surfactant system is still not an established procedure and not so well understood from a scientific point of view. In this review we summarize the work done in the field and we demonstrate that the role of the polymer is intimately linked to its interactions with the three other components in the system: the oil, the water, and the surfactant(s).

2.
J Colloid Interface Sci ; 615: 265-272, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35144228

RESUMO

HYPOTHESIS: Preparation of suspensions of nanoparticles (>1 wt%) coated with a polyelectrolyte multilayers is a challenging task because of the risk of flocculation when a polyelectrolyte is added to a suspension of oppositely charged nanoparticles. This situation can be avoided if the charge density of the polymers and particles is controlled during mixing so as to separate mixing and adsorption events. EXPERIMENTS: The cationic polyethylenimine (PEI) and the anionic carboxymethylcellulose (CMC) were used as weak polyelectrolytes. Polyelectrolyte multilayers build-up was conducted by reducing the charge of one of the components during the addition of the next component. Charge density was controlled by tuning pH. Analysis of the suspension of coated nanoparticles was done by means of dynamic light scattering, electrophoresis and small angle x-ray scattering measurements, while quartz crystal microbalance was used to study the build-up process on flat silica surfaces. FINDINGS: Charge density, controlled through pH, can be used as a tool to avoid flocculation during layer-by-layer deposition of polyelectrolytes on 20 nm silica particles at high concentration (∼40 wt%). When added to silica at pH 3, PEI did not induce flocculation. Adsorption was triggered by raising the pH to 11, pH at which CMC could be added. The pH was then lowered to 3. The process was repeated, and up to five polyelectrolyte layers were deposited on concentrated silica nanoparticles while inducing minimal aggregation.


Assuntos
Nanopartículas , Dióxido de Silício , Eletrólitos/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Polieletrólitos/química , Suspensões
3.
Nanomaterials (Basel) ; 10(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397118

RESUMO

The conservation of textiles is a challenge due to the often fast degradation that results from the acidity combined with a complex structure that requires remediation actions to be conducted at several length scales. Nanomaterials have lately been used for various purposes in the conservation of cultural heritage. The advantage with these materials is their high efficiency combined with a great control. Here, we provide an overview of the latest developments in terms of nanomaterials-based alternatives, namely inorganic nanoparticles and nanocellulose, to conventional methods for the strengthening and deacidification of cellulose-based materials. Then, using the case of iron-tannate dyed cotton, we show that conservation can only be addressed if the mechanical strengthening is preceded by a deacidification step. We used CaCO3 nanoparticles to neutralize the acidity, while the stabilisation was addressed by a combination of nanocellulose, and silica nanoparticles, to truly tackle the complexity of the hierarchical nature of cotton textiles. Silica nanoparticles enabled strengthening at the fibre scale by covering the fibre surface, while the nanocellulose acted at bigger length scales. The evaluation of the applied treatments, before and after an accelerated ageing, was assessed by tensile testing, the fibre structure by SEM and the apparent colour changes by colourimetric measurements.

4.
ACS Appl Mater Interfaces ; 10(39): 33652-33661, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30149696

RESUMO

Recent developments in paper and canvas conservation have seen the introduction of nanocellulose (NC) as a compatible treatment for the consolidation of historical cellulosic artifacts and manuscripts. However, as part of the assessment of these new materials for canvas consolidation, the adhesion of the consolidation treatment (which takes place between the applied material and the substrate) has not yet been evaluated, and as a result, it is poorly understood by both the scientific and conservation communities. After evaluating the potential of NC treatments for the consolidation of cotton painting canvas, we investigate a route to promote the interaction between the existing canvas and the nanocellulose treatment, which is in our case made of cellulose nanofibrils (CNF). This was carried out by introducing a cationic polymer, polyamidoamine-epichlorohydrin (PAAE), as an intermediate layer between the canvas and the CNF. The morphological, chemical, and mechanical evaluation of the canvas samples at different relative humidity (RH) levels demonstrated how the adhesion of the added PAAE layer is a dominant factor in the consolidation process. Improvement in the coating of canvas single fibers by the CNF, higher adhesion energy between the canvas fibers and the CNF treatment, and finally overall stronger canvas reinforcement were observed following the introduction of PAAE. However, an increase in mechanical response to moisture sorption and desorption was also observed for the PAAE-treated canvases. Overall, this study shows the complexity of such systems and, as such, the relevance of using a multiscale approach for their assessment.

5.
J Colloid Interface Sci ; 531: 189-193, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031261

RESUMO

The rate of hydrolysis of cleavable surfactant is known to have a strong temperature dependence. A nonionic gemini surfactant with a readily hydrolysable carbonate bond as spacer unit has been synthesized and evaluated. A carbonate linkage is special as spacer unit in a gemini surfactant because the hydrolysis results in two identical molecules, in this case a hydroxy-substituted nonionic surfactant, along with carbon dioxide. The critical micelle concentration for the gemini surfactant was an order of magnitude lower than that of the degradation product. The degradation of the new surfactant and specifically the effect of temperature on the rate of hydrolysis was investigated in detail. It was found that alkaline hydrolysis was rapid at 15 °C but very slow at 30 °C, i.e. there was a reverse relationship between rate of hydrolysis and temperature. The same behavior was found for monomeric nonionic carbonate-containing surfactants that were synthesized and used as references. This unusual behavior, which can be of practical use, is explained by the reverse solubility vs. temperature profile for amphiphiles carrying a polyoxyethylene chain.

6.
Carbohydr Polym ; 194: 161-169, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29801824

RESUMO

Nanocellulose has been recently proposed as a novel consolidant for historical papers. Its use for painting canvas consolidation, however, remains unexplored. Here, we show for the first time how different nanocelluloses, namely mechanically isolated cellulose nanofibrils (CNF), carboxymethylated cellulose nanofibrils (CCNF) and cellulose nanocrystals (CNC), act as a bio-based alternative to synthetic resins and other conventional canvas consolidants. Importantly, we demonstrate that compared to some traditional consolidants, all tested nanocelluloses provided reinforcement in the adequate elongation regime. CCNF showed the best consolidation per added weight; however, it had to be handled at very low solids content compared to other nanocelluloses, exposing canvases to larger water volumes. CNC reinforced the least per added weight but could be used in more concentrated suspensions, giving the strongest consolidation after an equivalent number of coatings. CNF performed between CNC and CCNF. All nanocelluloses showed better consolidation than lining with synthetic adhesive (Beva 371) and linen canvas in the elongation region of interest.

7.
Colloids Surf B Biointerfaces ; 168: 169-177, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29248277

RESUMO

Hydrolytic enzymes are combined with surfactants in many types of formulations, for instance detergents and personal care products. If the surfactant interacts with the enzyme there may be conformational changes that eventually lead to loss of the enzymatic activity. From a practical point of view it is important to understand the nature and magnitude of these interactions. After an introduction of the topic the review briefly discusses enzyme catalyzed reactions where surfactants are substrates for the enzyme. The rest of the review relates to associations between surfactants and hydrolytic enzymes without the surfactant being a substrate in the reaction. A discussion about general principles for such interactions is followed by a survey of the relevant literature related to four important types of hydrolytic enzymes: lipases, proteases, amylases and cellulases. It is shown in the review that the effect exerted by the surfactant differs between the different types of enzymes; it is therefore difficult to make general statements about which surfactants are most detrimental to the activity of hydrolytic enzymes. However, as a general rule nonionic surfactants can be regarded as more benign to an enzyme than anionic and cationic surfactants. This difference can be ascribed to the difference in binding mode. Whereas a nonionic surfactant only binds to the enzyme through hydrophobic interactions, an ionic surfactant can bind by a combination of electrostatic attraction and hydrophobic interaction. This latter type of binding can be strong and lead to conformational changes already at very low surfactant concentration, often far below its critical micelle concentration.


Assuntos
Amilases/química , Celulases/química , Lipase/química , Peptídeo Hidrolases/química , Tensoativos/química , Amilases/metabolismo , Celulases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipase/metabolismo , Modelos Moleculares , Conformação Molecular , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Eletricidade Estática , Tensoativos/metabolismo
8.
ACS Nano ; 11(10): 10489-10494, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28945958

RESUMO

Oriented arrangement of single crystals plays a key role in improving the performance of their functional devices. Herein we describe a method for the exceptionally fast fabrication (mm/min) of ultralong aligned dipeptide single crystals (several centimeters). It combines an induced nucleation step with a continuous withdrawal of substrate, leading to specific evaporation/composition conditions at a three-phase contact line, which makes the growth process controllable. These aligned dipeptide fibers possess a uniform cross section with active optical waveguiding properties that can be used as waveguiding materials. The approach provides guidance for the controlled arrangement of organic single crystals, a family of materials with considerable potential applications in large-scale functional devices.

9.
Phys Chem Chem Phys ; 19(35): 23568-23569, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28741630
10.
Adv Colloid Interface Sci ; 247: 426-434, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28318490

RESUMO

We review the use of various types of emulsions as media for synthesis of porous silica particles. The use of high internal phase emulsions, i.e. emulsions with a high ratio of dispersed to continuous phase, is an approach that has attracted considerable attention. Polymerization of the continuous phase followed by removal of the dispersed phase leads to a material with an even distribution of pores if the emulsion droplets are uniform in size. Another route is to use particle stabilized emulsions as template. This will lead to either hydrophilic or hydrophobic porous silica particles depending on whether the templating emulsion is oil-in-water or water-in-oil, respectively. Use of double emulsions as templates is a way to obtain porous particles with hierarchical porosity, usually both macropores and mesopores. Templating amphiphiles, which are often polyoxyethylene-polyoxypropylene-polyoxyethylene block copolymers, are needed in order to obtain materials with highly ordered pore structure. Non-ordered mesoporous silica with small particle size and relatively large pores can be obtained by emulsifying a silica precursor together with an inert solvent in water and allowing the silica to gel within the drops. Hollow silica spheres, i.e. spherical particles with a void in the middle, can be prepared by using emulsion drops as templates around which silica polymerizes. The particles have nanometer-sized pores penetrating the shell.

11.
Langmuir ; 33(9): 2411-2419, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28191982

RESUMO

Aluminum oxide surfaces are of utmost interest in different biotech applications, in particular for their use as adjuvants (i.e., booster of the immune response against infectious agents in vaccines production). In this framework, imogolite clays combine the chemical flexibility of an exposed alumina surface with 1D nanostructure. This work reports on the interaction between amino acids and imogolite, using turbidimetry, ζ-potential measurements, and Fourier transform infrared spectroscopy as main characterization tools. Amino acids with different side chain functional groups were investigated, showing that glutamic acid (Glu) has the strongest affinity for the imogolite surface. This was exploited to prepare a composite material made of a synthetic surfactant bearing a Glu polar head and a hydrophobic C12 alkyl tail, adsorbed onto the surface of imogolite. The adsorption of a model drug (rhodamine B isothiocyanate) by the hybrid was evaluated both in water and in physiological saline conditions. The findings of this paper suggest that the combination between the glutamate headgroup and imogolite represents a promising platform for the fabrication of hybrid nanostructures with tailored functionalities.


Assuntos
Silicatos de Alumínio/química , Aminoácidos/química , Ácido Glutâmico/química , Tensoativos/química , Adsorção , Argila , Isotiocianatos/química , Tamanho da Partícula , Rodaminas/química , Propriedades de Superfície
12.
Soft Matter ; 12(47): 9509-9519, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27853795

RESUMO

The formation and relaxation kinetics of starch-particle complexes were investigated in this study. The combination of cationic nanoparticles in suspension and anionic starch in solution gave rise to aggregate formation which was studied by dynamic light scattering, revealing the initial adsorption of the starch molecules on the particle surface. By examining the stability ratio, W, it was found that even in the most destabilized state, i.e. at charge neutralization, the starch chains had induced steric stabilization to the system. At higher particle and starch concentrations relaxation of the aggregates could be seen, as monitored by a decrease in turbidity with time. This relaxation was evaluated by fitting the data to the Kohlrausch-Williams-Watts function. It was found that irrespective of the starch to particle charge ratio the relaxation time was similar. Moreover, a molecular weight dependence on the relaxation time was found, as well as a more pronounced initial aggregated state for the higher molecular weight starch. This initial aggregate state could be due to bridging flocculation. With time, as the starch chains have relaxed into a final conformation on the particle surface, bridging will be less important and is gradually replaced by patches that will cause patchwise flocculation. After an equilibration time no molecular weight dependence on aggregation could be seen, which confirms the patchwise flocculation mechanism.

13.
Soft Matter ; 12(14): 3388-97, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26931418

RESUMO

In this study we investigate the interactions between cationic nanoparticles and anionic starch, where the starch was composed of 20 wt% of amylose, a linear polymer, and 80 wt% of amylopectin, a branched polymer. The mechanism of aggregation was investigated by scattering techniques. It was found that the cationic particles formed large aggregates with the starch as a result of selective adsorption of the amylopectin. Amylose did not participate significantly in the aggregate formation even when the charge ratio of starch to particles was <1. For starch to particle ratio >1 stabilization was recovered mostly due to the large hindrance brought about by the highly branched amylopectin. This results in a shift of the stabilization mechanism from electrostatic to electrosteric. The internal structure of the aggregates was composed of primary particles with starch coils adsorbed on the surface. This information supports the proposed aggregation mechanism, which is based on adsorption of the negatively charged starch in patches on the positively charged nanoparticles causing attractive interaction between the particles.

14.
J Colloid Interface Sci ; 467: 253-260, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26803604

RESUMO

Mesoporous silica nanoparticles are an important class of materials with a wide range of applications. This paper presents a simple protocol for synthesis of particles as small as 40nm and with a pore size that can be as large as 9nm. Reaction conditions including type of surfactant, type of catalyst and presence of organic polymer were investigated in order to optimize the synthesis. An important aim of the work was to understand the mechanism behind the formation of these unusual structures and an explanation based on silica condensation in the small aqueous microemulsion droplets that are present inside the drops of an oil-in-water emulsion is put forward.

15.
J Mater Chem B ; 4(4): 672-682, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262949

RESUMO

Due to an increase in lifestyle diseases in the developed world, the number of chronic wounds is increasing at a fast pace. Chronic wound infections are common and systemic antibiotics are usually used as a treatment. In this paper we describe an approach to encapsulate antimicrobial agents in hollow microcapsules covered with a nanofilm shell that degrades through the action of a virulence factor from Pseudomonas aeruginosa. The shell was assembled using the layer-by-layer (LbL) technique with poly-l-lysine and hyaluronic acid. The microcapsules were loaded with a model substrate or a drug. By crosslinking the components in the nanofilm, the film remained intact when exposed to human wound proteases. However, the film was degraded and the drug exposed when in contact with Pseudomonas aeruginosa's Lys-X specific protease IV. The antimicrobial efficacy of the drug-loaded microcapsules was confirmed by exposure to virulent Pseudomonas aeruginosa. The current study contributes to the establishment of a release platform for targeted treatment of topical infections with the aim of minimizing both overexposure to drugs and development of bacterial resistance.

16.
Adv Colloid Interface Sci ; 222: 79-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846628

RESUMO

The 20 standard amino acids (together with a few more that are not used in the biosynthesis of proteins) constitute a versatile tool box for synthesis of surfactants. Anionic, cationic and zwitterionic amphiphiles can be prepared and surfactants with several functional groups can be obtained by the proper choice of starting amino acid. This review gives examples of procedures used for preparation and discusses important physicochemical properties of the amphiphiles and how these can be taken advantage of for various applications. Micelles with a chiral surface can be obtained by self-assembly of enantiomerically pure surfactants and such supramolecular chirality can be utilized for asymmetric organic synthesis and for preparation of mesoporous materials with chiral pores. Surfactants based on amino acids with two carboxyl groups are effective chelating agents and can be used as collectors in mineral ore flotation. A surfactant based on cysteine readily oxidizes into the corresponding cystine compound, which can be regarded as a gemini surfactant. The facile and reversible cysteine-cystine transformation has been taken advantage of in the design of a switchable surfactant. A very attractive aspect of surfactants based on amino acids is that the polar head-group is entirely natural and that the linkage to the hydrophobic tail, which is often an ester or an amide bond, is easily cleaved. The rate of degradation can be tailored by the structure of the amphiphile. The ester linkage in betaine ester surfactants is particularly susceptible to alkaline hydrolysis and this surfactant type can be used as a biocide with short-lived action. This paper is not intended as a full review on the topic. Instead it highlights concepts that are unique to amino acid-based surfactants and that we believe can have practical implications.


Assuntos
Aminoácidos/química , Quelantes/química , Tensoativos/química , Amidas/química , Hidrólise , Estereoisomerismo
17.
Colloids Surf B Biointerfaces ; 127: 200-5, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25679492

RESUMO

This study deals with controlled release of drugs to a Staphylococcus aureus infected site from microspheres with an oily core and a polymeric shell. The intended use of the microspheres is for chronic wounds and the microspheres may be administered in the form of a wash liquid or incorporated in a gel. Chronic wounds often carry infection, and the use of microspheres with drug release triggered by the bacterial infection is therefore of interest. A lipophilic drug or a model of the drug was dissolved in an oil and the oil phase was dispersed into an o/w emulsion. A nanofilm shell was then assembled around the oil droplets with the layer-by-layer technique using the two biodegradable polypeptides anionic poly-L-glutamic acid (PLGA) and cationic poly-L-lysine (PLL). Since S. aureus exudes proteases such as glutamyl endopeptidase (V8) during colonization and infection, its substrate specificity was key when assembling the nanofilm. Since V8 is known to be substrate specific to the Glu-X bond, PLGA was chosen as the terminating layer of the nanofilm. Crosslinking the nanofilm after assembly lead to increased stability of the microspheres. It was shown that in a non-infectious environment, i.e. when a human wound enzyme, HNE (human neutrophile elastase), was present, the microspheres remained intact. The staphylococcal protease V8, on the other hand, readily catalyzed degradation of the microspheres, thus releasing the drug when triggered by the infectious environment.


Assuntos
Desinfetantes/farmacologia , Microesferas , Óleos/química , Peptídeo Hidrolases/metabolismo , Staphylococcus aureus/enzimologia , Alcanos/química , Betaína/análogos & derivados , Betaína/química , Humanos , Ácido Láctico/química , Elastase de Leucócito/metabolismo , Oxazinas/metabolismo , Poliésteres , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Padrões de Referência , Eletricidade Estática , Água/química
18.
J Colloid Interface Sci ; 445: 40-47, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25596367

RESUMO

The investigation aims to demonstrate the conceptual thoughts behind developing mineral specific reagents for use in flotation of calcium containing ores. For this purpose, a series of dicarboxylate-based surfactants with varying distance between the carboxylate groups (one, two or three methylene groups) was synthesized. A surfactant with the same alkyl chain length but with only one carboxylate group was also synthesized and evaluated. The adsorption behavior of these new reagents on pure apatite and pure calcite surfaces was studied using Hallimond tube flotation, FTIR and ζ potential measurements. The relation between the adsorption behavior of a given surfactant at a specific mineral surface and its molecular structure over a range of concentrations and pH values, as well as the region of maximum recovery, was established. It was found that one of the reagents, with a specific distance between the carboxylate groups, was much more selective for a particular mineral surface than the other homologues. For example, out of the four compounds synthesized, only the one where the carboxylate groups were separated by a single methylene group floated apatite but not calcite, whereas calcite was efficiently floated with the monocarboxylic reagent, but not with the other reagents synthesized. This selective adsorption of a given surfactant to a particular mineral surface relative to other mineral surfaces as evidenced in the flotation studies was substantiated by ζ potential and infra-red spectroscopy data.

19.
Adv Colloid Interface Sci ; 222: 18-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25441449

RESUMO

Biofouling of surfaces is a considerable problem in many industrial sectors and for the public community in general. The problem is usually approached by the use of functional coatings and most of such antifouling coatings rely on the effect of biocides. However, a substantial drawback is the poor control over the release of the biocide as well as its degradation in the paint. Encapsulation of the biocides in microcapsules is a promising approach that may overcome some of the problems associated with the more traditional ways of incorporating the antifouling agent into the formulation. In this review, we summarize more than a decade of microcapsule research from our lab as well as from other groups working on this topic. Focus will be on two coacervation-based encapsulation techniques; the internal phase separation method and the double emulsion method, which together enable the encapsulation of a broad spectrum of biocides with different physicochemical properties. The release of the biocide from core-shell particles and from encapsulated biocides in coatings is treated in detail. The release behaviour is interpreted in terms of the physicochemical properties of the core-shell particle and the coating matrix. In addition, special attention is given to the experimental release methodology and the implementation of proper diffusion models to describe the release. At the end of the review examples of antifouling properties of some coatings against common biofoulers are presented.

20.
J Mater Chem B ; 3(30): 6174-6184, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262736

RESUMO

The two enzymes Aspergillus sp. glucose oxidase (GOD) and horseradish peroxidase (HRP) were co-immobilized on solid silica supports in a spatially controlled way by using mesoporous silica nanoparticles (Hiroshima Mesoporous Materials, HMM) and a polycationic dendronized polymer (denpol). The silica support was first coated with the denpol, followed by the deposition of the mesoporous silica nanoparticles into which - in a next step - GOD was adsorbed. Finally, the GOD-loaded silica nanoparticles were coated with a denpol-HRP conjugate constituting of several HRP molecules which were covalently bound to the denpol via bis-aryl hydrazone (BAH) bonds. The entire immobilization process was followed in real time with quartz crystal microbalance with dissipation monitoring (QCM-D). The activities and storage stabilities of the co-immobilized enzymes were determined by analyzing a two-step cascade reaction involving the two immobilized enzymes GOD and HRP. d-glucose and o-phenylenediamine (OPD) were used as substrates for GOD and HRP, respectively. The cascade reaction - in which intermediate hydrogen peroxide was formed from d-glucose and dissolved O2 with GOD - was shown to take place. The immobilized enzymes remained fairly stable for at least 2 weeks if stored in contact with an aqueous solution of pH = 7 at 4 °C. If, however, denpol-BAH-GOD coated HRP-loaded mesoporous silica nanoparticles were used (the reversed situation), the cascade reaction was not effective. This was probably due to slow diffusion of hydrogen peroxide from the surface-exposed GOD to the particle-trapped HRP, and/or due to an inefficient loading of active HRP inside the particles. Overall, the combination of two enzyme immobilization methodologies - enzymes adsorbed within mesoporous silica nanoparticles and enzymes adsorbed as denpol-BAH-enzyme conjugates - allows the spatially controlled localization of different types of enzymes in a simple way. Possible applications of the concept are in the field of bioelectrode fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...